ACM SIGMETRICS 2025, Stony Brook, New York, USA

Revisiting Traffic Splitting for
Software Switch in Datacenter

Yeonho Yoo! Gyeongsik Yang' Changyong Shin! Hwiju Cho',
Wonmi Choi', Zhixiong Niu?, Chuck Yoo’

'Korea University (Seoul, Republic of Korea)
’Microsoft Research (Beijing, China)

== Microsoft

Multipath Networking in Datacenter

 Traffic in cloud datacenters (DCs) is increasing exponentially
* Driven by web search, deep learning services, data mining, etc

* Multiple paths between servers for high throughput and reliability

DC network fabric

BEE e

Multiple
paths exist

‘ ‘ ‘ ‘ ‘ ‘
N N N N N N
Servers Servers

Utilizing paths is critical

Software SwitchinDC

« Multiple VMs and containers per server

Software switch: bridge packets between 1) VMs/containers and 2) network interfaces
* E.g., Open vSwitch (Linux Foundation), Apsara vSwitch (Alibaba), Hoverboard (Google)

DC network fabric

..

Server 1 Server 2

\ - =
\ ’,” \\ ’¢”
v /” \ /”
\ - -
’ e e ' A <
- ¥ 8 - §08
I P

Servers Servers

Traffic Splitting at Software Switch

« Thousands of network connections (TCP/UDP) from VMs/containers
- Software switch splits connections across multiple paths based on weights

DC network fabric

e o i SELESN
4,000 3,000 2,000 1,000

’I
’/
e

¢”
, .
,,,,,,

Path}Path2 Path3 Path4

Server 1 ['Tnl ["ﬁ] ['1“]1'“1] Server 2
4 ~

Path weight

’

~

S 1 -
\) -5
e~

10,000 connections

Servers Servers

Previous Studies on Software Switches

« Many studies have focused on how to determine path weights

« CLOVE (CoNext 17): adjust weights based on congestion degree (e.g., # of ECN packets)
« VMS (JSAC 20), TeaVisor (INFOCOM 21): path capacity (e.g., bandwidth, RTT)

« Accurate and efficient traffic splitting often overlooked

Underutilized EBED 5 £ £
2 000/ 3,000 2,000 3,000

P a Pat Pat
Server 1 Overloaded
. :. -
{

Server 2

at
Path weight| 4

10,000 connections

\ - -

A -~ > . > >
Traffic splitting at software switch has not been studied!

Servers Servers

Background: Traffic Splitting Mechanism

Two-stage process: @ Packet classification - ® Path selection

packet packet packet

. i

Traffic set

@ Packet
classification

@ Path
selection

Path 1
Path 2

—
L

Path N

® Packet classification: Identify network connection to which incoming packets belong
Use a hashing on the packet header s 5-tuple to determine “connection ID"” (key)
Ensure packets from the same connection follow the same path to prevent out-of-order packets

Packet header

Src
IP

Dst
IP

Src
port

Dst

port

Prot
ocol

s hashing______
(e.g., Jenkins)

10.0
.0.1

10.0
.0.8

598
32

444
13

TCP

10.0
0.4

10.0
.0.7

113
42

882
33

TCP

10.0
0.4

10.0
.0.7

113
42

882
33

TCP

key

(Connection ID)

10042

395

395

Background: Traffic Splitting Mechanism

« Two-stage process: @ Packet classification - @ Path selection

packet packet packet

Traffic set

@ Packet
classification

« @ Path selection: assign a path to each connection considering path weights

Traffic set Connection ID
u 18:23- 18:3- 53928 414;4 TCP e M 10042 |
- 18.'2' 18:;). 1134 83832 op o T
- 18.2. 18.'3' 13?253 11111 Tcp || 648
18..8. l)c.)é% 53928 294 | TCP [) 90235 | e
8756 |

10.0. | 10.0.
- 017 | 0g | 374 | 949 | TCP o >

* Four techniques used in software switches:
« 1) random, 2) weighted round-robin (WRR), 3) weighted cost multipath (WCMP), 4) scoring

Path 1

@ Path Path 2

Path N

Path Path weight
........... . Path 1 |------- 6
.. E ? sath 2 |-commee 3
........ ®

T Path 3 |------- 1

Path Selection: (1) Random

* Path is determined using a random distribution
 Connection ID serves as the random seed

Connection ID

10042

395

648

90235

8/56

Path Path weight
> Path 1 |------- 6
> Path 2 [------- 3
» rand() Path 3 |------- 1
>
> Operation is simple,

but cannot reflect path weight!

E.g., ECMP generally uses random

Path Selection: (2) WRR

« Select paths sequentially based on weights (round-robin manner)
« Weighted multipath table: Contains multiple entries per path as much as weights (memory 1)
* Routing result cache: Stores routing decisions to prevent packet reordering issues (time complexity 1)

Higher overheads
due to two additional structures

Connection ID m Path Path weight
i 0
e [0 |1l a1 |6
10042 | Path 1 395 7 2| Path1 / Path 2 |------- 3
395 | Path1 3| Path1
648 Path 1 648 / 4 Path 1 Dat N 3 ______ 1
90235 | Pathi 90235 // 5| Path1
8756 | Path1 . 6 [Path 2
8756
/7| Path?2 .
10042 8 Path 2 ACh|eveS
9| Path3 | accurate traffic splitting

Path Selection: (3) WCMP

 Resource-efficient alternative to WRR

 WRR becomes computationally heavier as number of path weights and connections increases
« Weight reduction™ change the weights into smaller scales under the threshold

« E.g., 6,6 3,1> 2, 2 1forthreshold 5
Path weight

6
3
1

Weighted
multipath table

Path 1
Path 1

Path 1

Path 1

Path 2

Path 2

Path 2

NO o b WDN—O

Path 3

(0]

Path 3

Weight

reduction (T=5)

-

Modified Path weight

-
—» 2

-

OO DN—O

Weighted
multipath table

Path 1
Path 1
Path 2
Path 2
Path 3

S
\

Reduce overheads of WRR,
but distorts path weights

*Junlan Zhou et al. 2014. WCMP: Weighted cost multipathing for improved fairness in data centers. In Ninth European Conference on Computer Systems. 1-14.

10

Path Selection: (4) Scoring

« De-facto technique

* For each connection, examine all paths score - select the one with the highest score
« Score calculation: hash key of (connection ID, path ID) x path weight

Hash key x Weight Score

i 0.86 X3 —>

10042 34" /,’, v Path 2 function 0.28 X2 —>
395 ”',7,';""*:v Path 3 0.26 xl —
648 |57l

|

| |

90235 [/ | !
8756 | | .

Connection ID 4 Path T

[0,1]

Multiplyingj weights on randomly assigned hash results
- Reflecting path weights, but cannot satisfy weight exactly
(known as black-box)

Problem: Inaccuracy and Resource-inefficiency

« Measure accuracy and resource-efficiency (CPU cycles and per-packet latency)
« Dataset: Real-world DC traces from CAIDA™ and ClassBench™
« 200 trials with varying path weights

* Accuracy: Error rate (%) between actual and ideal connection counts per path
* Resource-efficiency: CPU cycles and per-packet latency

*--dﬂ

Accuracy I:?fs.g};qcce-
441% e ! y
2% J%m Random X (0]
2.9%
| WRR o X
P o ¥ wew | x| o
o O @M e.cf’*‘“Q M o Nt m— S

Accuracy (error rate) CPU cycles Per-packet latency

No technique achieves both high accuracy and resource-efficiency!

* CAIDA: The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/catalog/datasets/passive_dataset
** ClassBench: Jifi Matousek, et. al. 2017. ClassBench-ng: Recasting "ClassBench after a decade of network evolution. In 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). IEEE, 204-216.

12

Lead to Poor DC Networking Services

* Inaccuracy T -2 Leads to path overloading, resulting in slower speeds and packet retransmissions
« Per-packet overhead 1 —-> Accumulates across thousands of packets, increasing total service latency

« Our experiment: Significantly delays DC services (~2.8x compared to ideal*)

3 3 3 3
O @) @) QO
LL L L L
< 2 - 2 - 2 - 2
Q D D D
D D NN N \ N N
T 1pa-N S A T 1ol =4 4+ T 1\ 81 14 T 1B\ 8 4t
: : : -: [\
o) O ' O N O
Z oA NN I 1 z oA NN I z oL NN I 7 z oL AN P 7
Qe F (o0 QR F (0O QB (o0 Qe (o0
O\ RIS OTNE N OTU A O N
2™ e ot T ot NN @ WO
Web search Data mining Deep learning In-memory cache
(Twitter)

* |deal: factitious scenario where software switches perform perfectly and efficiently accurate traffic splitting

H openvswitch [ovs Public

Widely Recognized Issue in Practice

* The problem has been widely known in the open-source community, no solution exists yet
 |[naccuracy of scoring is treated as black-box

Most popular open-source

¢> Code [9 Pullrequests (») Actions () Security .
software switch
¥ main ~ F O Go to file <> Code ~ About
Open vSwitch
7 igsilya ipsec: libreswan: Fi.. @ 6fc5221-4daysago Y
0 Readme
.Ci github: Get sparse f... 2 months ago 55 Apache-2.0 license
AN Activit
.github/workflows github: Add a perm... last week GV

(=) Custom properties

Q Notifications % Fork 1.9k & Star 3.7k @vs

Open vSwitch

OVS algorithm for weighted group selection180

Still opened Discussed as an issue

‘g araghava opened on Feb 1, 2020

The code in group_best_live_bucket does the following: it assigns each bucket a score based on the hash of the flow and the bucket

ID (should be uniformly distributed), and then simply chooses the highest score.

This doesn't properly take into account the relative weights of buckets. For example, imagine you had buckets of weights [5, 100,
100] and a random variable uniformly distributed from 0-1. The likelihood that the bucket with weight 5 even has an opportunity of
winning is the likelihood that both 100s do not win, which is 0.05 * 0.05 = 0.0025 (the chance of bath 100s scoring less than a 5).

However, we expect the likelihood of actually choosing the bucket with weight 5 to be 0.024 (5 / (100 + 100 + 5) = ~0.024), which is

[ovs-discuss] group table|with different splitting weight| """

Jiaqi Zheng jiaqi369 at gmail.com
Fri Feb 19 16.45.51 UTC 2016

* Previous message: [ovs-discuss] Fw: does 802.1AD(QinQ) supported in ovs
* Next message: [ovs-discuss] ovs netdev-dpdk priv descriptor.
e Messages sorted by: [date | [thread | [subject | [author |

Also discussed in mailing list

14

Propose VALO: New Traffic Splitting Mechanism

Our Goal: achieves both high accuracy and resource-efficiency (by improving scoring)

1. Modeling of scoring to identify root causes of its inaccuracy

. ° ° ° A
Score graph: mathematical modeling of scoring (§4.1) Dath 2 Path 1 = Path 2
score | 1 ’
HP-value x Weight Score P 7
Path 1 Hash 0.4 x2 => 0.8 /
] = function , y
Connection Path 2 [0.1] 0.3 x1 —> 0;3 P s ® Ppath1> Path 2
5-tuple packet . P (0.8,0.3)
header =L =

s Path1

2. Devise VALO, incorporating its novel parameter, "VALO gravity”

- Formulate resource-efficient method for calculating VALO gravity (§4.1)

=

Connection

Path 1

score

X
Path 2 1

xi_ﬁ(kwi + Wipq + - +wy,)ﬁ
_kz (k — DWi_1 + Wi + ... + Wy,

15

Mathematical Modeling of Scoring

« Scoring calculates scores for all paths
« Each connection has N scores corresponding to N possible paths

Hash key x Weight Score Set of Scores

Path 1 —JzER) 0.4 x2 0.8 f------__
"E function 2> (0.8, 0.3)

Connection A Path 2 [0,1] 0.3 % 0.3

Hash key x Weight Score
Path 1 ’ 0.4 x3 1.2 |-
ash R
LB = Path 2 —REIRE 0.2 x2 0.4 |---—->(1.2,0.4,0.3)
. 0,1
Connection A Path 3 [0,1] 03 X1 03

16

Each connection as a Coordinate

* Represent a connection by scores assigned to each path, denoted as s; (score for path i): (s, S5, ..., Sy,)
* E.g., (0.8,0.3) or (1.2, 0.4, 0.3)
* N-dimension Coordinate space:

1.0

0.8
f 1.0
N [0.8 E
o (1.2,0.4,0.3) |, &
AN | o
2 o C 0.4 U)
5 0.4f (0.8, 0.3) &
) ° - 0.0
’ 3.0, 00
1', >4 2.0 s o 0.5
f A,, 10 s . S
I' ’\'/S 7. 0.5 00 2.0 \I;\srL.
ll 0.8 ' L - . . , . . . & P\
4 .00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 4
II
Each axis represents ____---==" > AXis 1t §;

scores of each path . .
I,: two paths exist (2-D) I5: three paths exist (3-D)

Score Graph: for All Possible Connections

« Score graph can represents all possible network connections
« Each axis represents the range of all possible scores for each path

All possible range of scores

/" l0p o o v w v v w v v v w w v w v w w w w v

0O8pr o o 9 9 0 © 0 0 0 & & & 9 O & 0 90 0 -0 (

0.2

v
o
o
o
o
1+
0]
o
o
o
8
o
o
o
o
]
o
]
]
(@]
P

0'([J‘).OO 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

\ Axis 1. S; /

I,: two paths exist (2-D) I5: three paths exist (3-D)

) : {f~,~}.
b © o © © 0 © ¢ 06 0 0 0 000 0 0 0 0 0 (09" o)

N stos” T 0.8 ;
L) 06p © o 0 0 6 0 6 0 © 66 ¢ © 0 06 6 0 6 0 0 - _.
o o Sole 3 O 6 m
Q1 b © 6. ¢ ¢ 06 ¢ ¢ 06 06 0 0 060 0 0 0 0 0 0 (3 ¢ SJE)
(D q = | 0.4
© m— ° %o %, 3 ? \8 = ¢ pe CI)
é 04p © ©¢ 6 © © © © © © & © 0 0 0 0 © 0 0 & ¢ | . ol ¥e ', SO, [0.2 w

18

Path Selection in Score Graph

« Connections (points) are distinguished by scoring: assigned to path with the highest score

score of path 1 (0.5) < score of path 2 (0.9) 2 Select Path 2)

—
POORRPHOPOOOOECC00060

V0000 POPPO0P0 00000000
D00 000000P00000000 000
POOOOOOOOOOO00000 0000
DOOOOOPO00000000 00000
POOOOPOOOPOOOOOOOOOOO OO
Pe00000000000dpBdboee
V0PPOOOOO0000 00 ©00
POOOPOOOOOOOO OG0 OO OYO
POOOOOOOOOOOPOOOO OO0

AXis 2: S,

Path 1: §; > S, and §; > S3

Path 3: S; > S;and S5 > S,

Path 2: S5 > S;and S5 > S,

score of path 1 (1.5) > score of path 2 (0.3) > Select Path 1

I,:Two paths exist

I5: Three paths exist

Volume: The Number of Connections per Path

« Connections are divided into distinct sub-area (U;), each selected path i
« Volume: Total number of connections assigned to a path (e.g., calculated as the integral over area)

score of path 1 < score of path 2 2 Path 2 «

S1>8,and S} > S5 S3 > S5;and S5 > S,

I 1.0

£S 1€ SIXY

AXis 2: S,

0. . ./ . o’ ./ . st .7 10 \o/ — ./ ./ . s/ \/

Axis 1: S, S;>S;and S; > S,
score of path 1 > score of path 2 2 Path 1

I,: two paths exist I5: three paths exist 0

Mismatch between Volumes and Weights

« Given two paths with weights 2:1 - the volume 3:1 (mismatch)
« Actual connection split is 3:1 ratio: matching volume, not weights

1.0

Qo
o
o

C deal
0.8 O _
B 500 mEm Scoring
. mm \olume ratio
C/c)\] 0.6 é
& O 400
0 >
é 0.4 2 200
-
-
0.2 < O
Path 1 Path 2
(weight: 2) (weight: 1)

0'(5).00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00

Axis 1: S,

I,: two paths exist

21

Mismatch between Volumes and Weights

« Similar mismatch for three paths:
* For given weights 3:2:1, the volume ratios becomes 3.83:1.83: 0.33
 Actual connection split observed: 3.8:1.8: 0.3

» 800
S |deal
5 EEE Scoring
Q 600 .
- mm \/olume ratio
C
O
O 400
Y
O
| -
2 200
=
-
Z 0
A/ , Nad .5?’..51 Path 1 Path 2 Path 2
S DR (weight: 3) (weight: 2) (weight: 1)

Actual splitting ratio matches volume, not weight!

: Cause of inaccuracy >

Our idea: Align Volumes with Path Weights

« QOur observation: actual splitting ratio matches to “volume”
« Adjust sub-areas to ensure their volumes match path weights

AXis 2: S,

1.0
0.8
0.6
0.4

0.2

0'8.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00

AXis 1. S,

I,: two paths exist

» 800
C
O
g 600
-
Q
O 400
¢
& 200
-
-
Z 0
Path 1 Path 2
(weight: 2) (weight: 1)

23

VALO Gravity

« Simple, but powerful parameter to align volumes accurately with given path weights
 |nstead of directly multiplying path weights, multiply by "VALO gravity”

Hash key x Weight Score
Path 1 —_
> 0z x3
LE Path2 —REILCIE—> 0.4 x2 —> 0.8
. 01
Connection Path 3 [0,1] 0.2 %1 —_ 0.2

VALO gravity
calculation

.
Hash key x VALO gravity Score
0.3 x] — 0.3

0.4 x0.83 —
0.2 x0.64 — 0.19

24

VALO Gravity Calculation

« VALO gravity: New weight to align volumes accurately with given path weights

« Optimized calculation: Efficient method with low complexity
* Robust to higher dimension paths (e.g., 4D graph for four paths, 8D graph for eight paths)

* Derivation steps:
* (1) Calculate path i s volume (vol(U;)) with variable path weight (x;)

X9 Xm41---Xn N >m
UOI(Un,i) = an:i %(Xn,m _Xn,m+1); Xnm = 4 Xp n=m
0 n<m

\

* (2) Rearrange to above eguation, express x; in terms of the volume (vol(U;))

)ﬁ

Xi\]i[(kvol(Up) + vol(Upgs1) + -+ - +vol(Upp)
x;) L (k = 1)vel(Uyg—1) +vol(Upg) + -+ - +vol(Uy)

 (3) Substituting volumes with path weights (w;), calculating x; as VALO gravity

1
arithmetic operations —) k-1

) (k—Dwi_1+wr +...+wy,

Optimize calculation by simple Xj ﬁ (Kwi + wWipq + -+ wy,
X1 =

25

(1) Volume Calculation

 Derive path volume (vol(U;)) from path weight (x;)
« Use mathematical induction to generalize volume patterns as the number of paths increases

4 N)
0O+0 1
: 1 1
(2 Paths eX|St) UOI(UZ,l) = Exg + (xlxz — x%) ‘UOl(Uzag) = 5.}’(‘%
- AN J
4 I
©+0+0
1 1
\Uol(Ug,l) = §x§’+ E (523 — 23) + (301 %203 — x%xg)J
(3 Paths exist) : ©e+0 | ®
1 1 1
vol(Usz) = gx;’ + §(x§x3 - x3) || vol(Us3) = =3
N PAN 3 7
Mathematical induction (proof in §4.2.2)
— —
X Xm41...-Xn n>m
(n Paths exist) vol(Up,;) = 2o _; % (Xn,m — anm.}.l), Xom = x) n=m

0 n<m

(2) Weight Calculation

* Reorganize equations to express x; explicitly in terms of the volume (vol(U;))
« Using Inverse matrix operations to simplify complex calculations

X Xm41..-Xn n>m

UOl(Un,i) = an=f % (Xn,m — Xn,m+1): Xnm = x:: n=m
0 n<m
- 1 1 1 1 17177 1Ty]
Uﬂl(Un,l) 1 % % = % 1 —1 Xn,l
Express as matrix vol(Up,2) 23" 4 1 -1 Xn,2
vol(Up3) | — 3 " Xn3
: RN 1 -1 :
UUZ(UH}H) %_ | 1 _Xn,n
— Inverse matrix —
- —
Xn1| [111---1][1-1 | [00l(Un1)| [v0l(Un1) +v0l(Unz) +00l(Uys) + -+ +00l(Upp)
Xn2 11---1 2 =2 vol(Uy,2) 2001(Up2) +v0ol(Uy3) + - - - + vol(Upp)

Xn3 1---1 . vol(Up3) 300l(Ups) + -+ +vol(Upp)

: . (n—-1)(-n+1) : ;
Xnn| | {1 n | (vol(Unn)| | nvol(Upn)

27

(2) Weight Calculation

Xn1| [vol(Un1) +v0l(Uyz) +v0l(Uys) + - - - + vol(Upp)
Xn2 200l(Upz) + vol(Up3) + -+ +vol(Uyp)
Xns| = 3v0l(Up3) + - - -+ vol(Upy)
. . Xi :
Define weights as — Xnn] | nvol(Up,n)
X1
X x§ X+ X Xp Xnz2 200l(Upp) +--- +v0l(Upyp)

X1 X1 XXgX: - XXxn Xni 00l(Up1) + -+ - +00l(Unp)

x3 _ Xn2 o (Xn,g)% _ Xz (3‘001(Un’3) + -+ +00l(Uyp)
x1 Xni Xn.2 X1 200l (Up2) + - - - +vol(Upy)
5 (Xn’3)% v (Xn’aj:)% _ JE v (4001(Un’4) + e UOl(Un,n)

x1 Xnpa1 Xn.2 X3 X1 3v0l(Uy,3) + -+ +vol(Uy,p)

x4 Xn2

p
L =

Generalize to
n paths T —

(kvol(U, x) +vol(Up 1) + - -+ +v0l(Upp)
s (k = 1)wol(Upg—1) +vol(Upg) + - - - +vol(Upp)

)ﬁ

(3) VALO Gravity Calculation

* Finally, weights are expressed in terms of the volume of each path

Xi ﬁ(kvol(U,) +vol(U, g41) + - - - +vol(Up.pn));f
X1 E (k= 1)vol(Upr-1) +vol(Upg) + - - - + vol(Uy,p)

Instead of volume (vol(U,, ;)), substitute given path weights (w;)

kwr + Wiy + -+ -+ wy,)%
-1

Xj (
(k—1Dwr_1+w+...+w,

k=2

x.
Now, we get nhew weight = , VALO gravity
X1

Calculated by only simple arithmetic operations

29

VALO Workflow Summary

« Through VALO gravity, the number of connections matches with the path weights

Hash key x Weight Score

Hash

TEE " IS L =
p— C
Path 2 [0,1] 0.4 x2 —> 0.8 = mm Scorin
Connection S 600 - J |
— c m=m Volume ratio
-
3 400
Xi _ I (kwi + Wi + - -+ wy,)ﬁ VALO gravity ;
x4) (k — 1)W1 + Wk + ... + Wy, calculation _E 200
-
N Z 0

Hash k VALO it
ash key x gravity Score Path 1 Path 2

0.3 x1 — 0.3 (weight: 2) (weight: 1)
0.4 x0.83 —

30

Evaluation

Topology: Two-tier DC topology (core switches increased 2-8), using ~32 containers
Compare five techniques: random, WRR, WCMP, scoring, and VALO (implemented on OVS)
Workloads: 1) DC traffic traces (CAIDA, ClassBench) and 2) Real-world DC workloads
Measurement: 1) accuracy, resource-efficiency and 2) end-to-end latency of DC services

Hosts (src)

Server 1

Hosts (dst)

Server 2

- 2-8 paths exist

- Random, WRR, WCMP, scoring, VALO

- CAIDA, ClassBench
- Web search, data mining, deep learning,
in-memory cache

31

Traffic Splitting Accuracy

« Measure error rate (MAPE) between ideal (C;) and actual (C;) connection distributions

MAPE = 100 Z |C; -C il

150

?12(0) r A\EEI—-//E] Random — q 120
a\/ Scoring &\o/

% 10 ‘ e WCMP % 60

= s oo = 30+

0 “ { 0

0 20 40 60 80 100 120 2 3 4 5 6 7 8
Connection load (K) Number of paths

VALO keeps low accuracy (3.1% on average) in all cases (~46.3x improvement)

32

Resource-efficiency

 CPU usage « Per-packet latency

)
o

- ~
-
-
-
WRR .
-
-
-
P o WK

o

W
@)

5
4‘6’
LD

Latency (us)
N
o

CPU cycles (x10°)

Lol =2

to achieve high accuracy!

N

Random, WCMP, Scoring

5 @
% . Random, WCMP, Scoring
VALO 0 : T VALO
0O 20 40 60 80 100 120 O 20 40 60 80 100 120
Connection load (K) Connection load (K)
« Memory usage
—~ 8
m
VALO shows a similar level of < g
ici S 4 VALO d t
resource-efficiency as P " oes no
R N _£3 e geo e o
random, WCMP, and scoring 3 * VALO sacrifice efficiency
S
=
()
=

1 10 20 30 40 80 120
Connection load (K) 33

Flow Completion Time of DC Services

VALO achieves the shortest flow completion time (FCT) on real-world DC service workloads
* VALO improves 99% tail latency by ~2.8X

- - - -
EI_) 4 - EL) 4 EI_) 4 &_) 4 i
o @S halE = o a
o + QO + QO + L QO +
N R 24 N R 24 | N X2} N R 24|
(Vo) (Vi e)) EEE o O oo (vle)! o
§@1_--.§-_--- £ § o fElN O §_
o l_ o 0 O L o o
z oLkl z odldidh 2 oAbl 2 oLl
60§Q‘QE)§O{\°§?\’O bog@qg}goi\(\%\/o P &Qgc‘}‘ O{\X%\/O 60§Q‘QC~) QO\\X%\/O
Q_(OQ @ %0 Q_(b'(\ @ %0 Q_IOQ @ %o Q_(O'(\ $ 60
Web search Data mining Deep learning In-memory cache
(Twitter)

34

Conclusion

« Summary
* Major result: Achieves accuracy by ~46.3x and CPU usage by ~10.7x - accelerate DC services (~2.8x)
« Approach 1: Analyze root-cause of inaccuracy of scoring with score graph
« Approach 2: Find new internal weight, VALO gravity that align volumes to path weights

« VALO can integrate with other load balancing techniques (§5.5)
* Not only per-connection, VALO can work at finer granularity (e,g., flowlet, per-packet)

A 5000
—~6000- Flowlet+WRR ,,A —~4000- Per-packet+Random
e 7))
E4000— e £.3000-
A\ A -
O 2000— A L Ak o 2000
L. 1000 Per-packet+VALO
z,x A--A A AT Flowlet+VALO er-packe
| | | | | | | | I O | | | | | | | |
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Network load (%) Network load (%)

 Artifact
 VALO implemented and evaluated on de-facto software switch (Open vSwitch of Linux foundation)

 Qur codes are available at GitHub!
* https://github.com/yeonhooy/VALO-OVS-SIGMETRICS25.git @VS

Open vSwitch

T'hank you

Yeonho Yoo (yhyoo@os.korea.ac.kr)

	슬라이드 1
	슬라이드 2: Multipath Networking in Datacenter
	슬라이드 3: Software Switch in DC
	슬라이드 4: Traffic Splitting at Software Switch
	슬라이드 5: Previous Studies on Software Switches
	슬라이드 6: Background: Traffic Splitting Mechanism
	슬라이드 7: Background: Traffic Splitting Mechanism
	슬라이드 8: Path Selection: (1) Random
	슬라이드 9: Path Selection: (2) WRR
	슬라이드 10: Path Selection: (3) WCMP
	슬라이드 11: Path Selection: (4) Scoring
	슬라이드 12: Problem: Inaccuracy and Resource-inefficiency
	슬라이드 13: Lead to Poor DC Networking Services
	슬라이드 14: Widely Recognized Issue in Practice
	슬라이드 15: Propose VALO: New Traffic Splitting Mechanism
	슬라이드 16: Mathematical Modeling of Scoring
	슬라이드 17: Each connection as a Coordinate
	슬라이드 18: Score Graph: for All Possible Connections
	슬라이드 19: Path Selection in Score Graph
	슬라이드 20: Volume: The Number of Connections per Path
	슬라이드 21: Mismatch between Volumes and Weights
	슬라이드 22: Mismatch between Volumes and Weights
	슬라이드 23: Our idea: Align Volumes with Path Weights
	슬라이드 24: VALO Gravity
	슬라이드 25: VALO Gravity Calculation
	슬라이드 26: (1) Volume Calculation
	슬라이드 27: (2) Weight Calculation
	슬라이드 28: (2) Weight Calculation
	슬라이드 29: (3) VALO Gravity Calculation
	슬라이드 30: VALO Workflow Summary
	슬라이드 31: Evaluation
	슬라이드 32: Traffic Splitting Accuracy
	슬라이드 33: Resource-efficiency
	슬라이드 34: Flow Completion Time of DC Services
	슬라이드 35: Conclusion
	슬라이드 36: Thank you

