........
.........

.........

for Performant and Priority-Oriented @
Message Delivery

Yeonho Yoo'2, Zhixiong Niu2, Chuck Yoo', Peng Cheng?, Yonggiang Xiong?

'Korea University (Seoul, Republic of Korea)
°Microsoft Research (Beijing, China)

@ KQREA m= Microsoft

7th Asia-Pacific Workshop on Networking (APNET 2023)

Fast Increase of loT Devices and Messages

 loT—a vital device in smart industries

» Significant expansion (post COVID-19 pandemic)!'!
= ~29.4 billion loT devices (2030) generate ~73.1 ZB messages/data (2025)

20— >

15= »”

Connected loT devices in billions

[1] https://www.ridge.co/blog/iot-and-the-cloud/

loT-Cloud Connectivity

* Massive loT messages transferred to cloud

 Cloud takes over all tasks on messages!”!
= Scalable & reliable data management
» Advanced analytics (w/ big data + machine learning techniques)
» Real-time loT device management

Cloud (loT platform)

% Mi/crosoft Azure %1

poll 11
("sfamazon |

\ N7 webservices /
atfvan]e

by
cisco. \@/

CISCO 10T SYSTEM Watson Cloud loT Core

Smart Industry

Q¥

LEH HHHE '_/?:

[2] https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub

\ Challenge for loT Devices

* loT devices typically do not support TCP/IP networking stackFl
= |nstead, LLNs
" e.g., 802.15.4 (Zigbee), BLE (Bluetooth), LoRa

Device itself: lack of Internet connectivity

[3] Dong, Wei, et al. "TinyNet: A lightweight, modular, and unified network architecture for the internet of things." Mobisys. 2022.

Efforts for loT-Cloud Connectivity

* Recent studies on enabling loT-cloud connectivity of loT devices
« Performance: problematic due to energy and resource constraints of devicesl’]

OpenThread / Thread (Commun Mag 19)

TinyNet (Mobisys 21)
~ e
802.15.4
0T 6LowPAN ’ Internet .

c
O
E=
©
=
Q
o
<

LoRa
/ | e

. . TCPIp (NSDI 20
BLEach (SenSys 17) LoRaX (COMPASS 22) P)

[4] Kumar, Sam, et al. "Performant TCP for Low-Power Wireless Networks." NSD/. 2020.

Missing Spot: loT Cloud Gateway

* loT gateway: essential device for Internet connectivity
» Standard solution in industry (e.g., Azure loT hub, AWS loT)

loT devices

Q

g

v
L

loT cloud gateway

| socket || usBBsus |

loT Agent

Comm

Message
Pub/Sub

CA

Cloud

T

* Internally run loT agent per device for
= Communication across various protocols

» Message delivery (e.g., MQTT, HTTP, AMQP protocols)

» Generate messages / Sending messages

» Certificate authority (CA) and data encryption (e.g., TLS)

Observation: Scalability Problem

loT gateway must be scalable enough to manage multiple loT devices

Conduct experiments on closely mimicked real-world |oT scenarios

= Emulate loT gateway solutions of MS Azure and AWS
= Emulate usecases such as smart farm sensors, heartbeat sensors, and drone cameras

Our findings on scalability
1) Poor latency

2) Poor CPU usage

3) Inefficient CPU mismatch

4) TLS encryption overheads
5) Message priority problem

Poor Latency and CPU Usage

4004
11000+ L | B User 1 Kernel
? -~ o 300
= 6000~ ot D
> 1255x% - 4
S 1000~ /’ = 200~
© A e o
2 1004 -)
T e < 100
L 501 ,,’ 5 |
D ’ -
(e)]
0 T T T T 0-
1 4 16 64 256 1 4 16 64 256
Number of loT devices Number of loT devices

« Exceed 1 second latency for only 64 devices (up to 11 s,1255x%)
= Serious problem (e.g., Health messages like ECG require < 1 s delivery)]

* Four cores saturated for only 64 devices

[5] Shukla, Saurabh, et al. "An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment." PloS one. 2019.

" CPU Profiling: Inefficient CPU Architecture

Scheduling/ f : [-
: Contoxt ovichiy — | Inefficient CPU

Lock/unlock=4] usage of ARM
s - - = el s - - - - - - S S S - —
Data copy
Memory
management
TCP/IP 4 '
Netdevice = ARM
kb Il x86
managment

0.0 0.2 0.4 0.6
Fraction of CPU cycles

 Profiling has been conducted on two architectures, ARM and x86 (by Perf)

« ARM—frequent and widely used for loT gateways but show inefficient usage
» Scheduling/context switching: 55.7% more than x86

» Lock/unlock: 3.4x more than x86
» Especially, spin-lock becomes too expensive for 0T devices

TLS Encryption Overhead

* Increase in CPU usage and latency when msgs are encrypted by TLS

100 Reasonable

Biggest overhead
: | message size

s

. o

Frequent encryption: &
2

o

(&)

c

Overhead:i

l1008 | sooB | 1kB | 4KB I16KB|

Message size Long encryption delay

« Small msg (100 B): 73% 1 CPU cycles + 134% 1 latency
« Large msg (16 KB): 128% 1 latency
* Reasonable point—1KB: smallest overhead

Message Priority Problem

« Msg priority in loT (baseline): MQTT s QoS levels
= QoS 0: lower latency & reliability / QoS 1: higher latency & reliability

30
m [J Average latency EZ Reliability
. £ 100 -
Only 18ré7d5u§)elatency 3 20 Poor reliability s o
g (27.9%) S
O | SR WU —>— . —— =
o 50 2
m __________ -25
>
<<
0 W77 7 1,
1 (QoS 0) 2(QoS 1)

loT device ID (QoS level)

* QoS 0: 18% better latency but 62% higher packet drops than QoS 1

» Severe packet drops (reliability) with very small improvement in latency

3 A e o o e e oo

P % e % e S

o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
e
ks gt S S R e g ks gt S S R gt L

L L - L - L - L - L - "‘-ﬂ' L - L L L - L - L - L - L L - L

o, o, o, o, o, o, o, o, o, o, o, o, o, o, o,
i i o o
ity bty] bty]]
R i i i i R i i i R i

Challenges

. Inefficient CPU architecture
2. TLS encryption overhead
3. Message priority problem

S et
o+ - o+ o+ - o+ - o+

e +++ e +++++++ o 1*::4:1:1- e +++++++ o 1*::4:1:1- o 1*::4:"‘_1-

e e L R R e e

SegalNet

« Advanced loT gateway architecture
for performant & priority-oriented message delivery

loT devices

© -

gl

..

=

c
®)
=
Q
o
O
o
o

manager

SegalNet

|

SegalNet agent

USB BUS

Channel manager (channels) |(—->

Device
Conf

Message Priority
manager Table

NIC

‘ Priority Queuing Disc ‘

Architecture-aware Agent Management

Challenge: CPU architecture mismatch

« ARM: high overheads in scheduling and lock
 Core affinity (pinning) to avoid costly operations
» Reception manager: determine the specific core on which each agent operates

* How to decide core affinity?

» | everage Jenkins hash function to equally distribute loT devices across cores
» Future work: more intelligent schemes on core allocation

Reception manager

loT Devices
(Device ID, MAC,...) Jenkins Hash Core selection Core #1
- 2 key | Core SegaNet Agents

.............. Core #2

-..............'.'.'.'.'.':::::: N b . a | Core#1
....._.....:::::;;;;:::::.. : - P ro— Core #3

‘‘‘‘‘‘‘‘‘‘‘ q c Core #3
key d | Core#4 Core #4

Efficient Message Batching

Challenge: TLS encryption overhead

« Avoid frequent TLS encryption by message batching

« Efficient message batching with three thresholds

1) Number of connected loT devices (n)

= Small loT devices (n < 50) = no batching

= Numerous loT devices (n = 50) - batching
2) Message size (m)

= Aggregating record data until m = 1KB
3) Waiting time ()

= Aggregating record data until f = 1 second

Priority Guaranteed Packet Processing

Challenge: Message priority problem

. o 1 PTria(E)rli;y " SegaNet agent
* Prototype with two priority levels
= 1: high-priority, 2: normal i 2 l STy
= Future work: Can be extended for various levels Sl
. .) ‘ TCP/IP layer
 High priority msgs w/o message batching
Netdevice subsystem
(Priority queue disc)
» Msg classification per priority
* Implemented by priority gdisc filters Qu+e 1] [aueue 2| [aueve 3] [queus 4
* Dequeue packets based on priorities NIC driver (Priority queue scheduling)

» Priority queue scheduling at the driver level

Evaluation

« Evaluation metrics
1) CPU usage
2) Message latency
3) Message priority (latency and reliability)

« Baseline (native loT gateway): Raspberry pi 4 + MQTT (QoS 1) + TLS v1.3

* Future work
« Real-world & large-scale experiment
« Comparison with others (e.g., Interoperability loT devices, Azure loT gateway, ...)

" CPUand Latency Improvement

400

w
o
o

N
o
o
[|

100

Total CPU Usage (%)

o

Native

| € SegaNet

Number of |loT devices

Latency (ms)

130001 Native

8000 1 [SegaNet

1200
700=
200) “A M

50+

Number of loT devices

 Total CPU usage: ~77.6% reduced (not saturated!)
« Message latency: ~16.7x improved (under than 0.8 s)

Message Priority

50

X Average latency
1 99% tail latency

NS
o
|

w
o
|

Latency (ms)
S
]

-
o
1

X X X

X
1 1 1 1
1(1) 2(2) 3(2) 4(2)
loT device ID (priority)

o

« Setting different priorities (1 or 2) on four loT devices
 Higher priority (1): ~43.2% better latency than normal priority (2)
* No packet drops for all priorities

\ Summary

« Scalability issues of loT gateway from real-world experiments

» Poor message latency and CPU usage

= CPU architecture mismatch results in ~56% CPU cycles waste

= TLS encryption leads to ~73% more CPU usage & ~134% longer latency

= Existing message protocol: only 18% latency reduce with ~62% packet drop

« SegaNet: An advanced loT gateway architecture addressing key challenges:

= 77% lower CPU usage and 16.7 x better latency
» Prioritized processing of messages with 43% faster delivery and zero drop

Future Works & Vision

v & K

Container Cooperation with Large-Scale

at loT Gateway loT and Cloud Environments
(e.g., OpenNetLab)

SegaNet: potential to serve advanced loT gateway and loT-cloud framework

Thank you

\({ APNet
2023

\ QnA

Appendix - Experiment settings

Environment

* loT gateway: Raspberry pi 4
 ARM Cortex-A72 64-bit quad core@1.5GHz CPU, 8GB RAM, 1 Gbps Ethernet
Each loT device generates a 100B-1KB message per 100 ms
loT gateway publishes MQTT message with QoS 1
Messages are encrypted with TLS v1.3
Message broker is placed at cloud (emulate with separate server machine)

Latency measurement
» Elapsed time of individual messages processed by loT gateway
* Measure 99% tail latency of all messages

CPU measurement
« Average CPU usage while processing messages using mpstat & Perf (Linux)

