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• IoT―a vital device in smart industries
• Significant expansion (post COVID-19 pandemic)[1]

§ ~29.4 billion IoT devices (2030) generate ~73.1 ZB messages/data (2025)

2[1] https://www.ridge.co/blog/iot-and-the-cloud/



• Massive IoT messages transferred to cloud
• Cloud takes over all tasks on messages[2]

§ Scalable & reliable data management
§ Advanced analytics (w/ big data + machine learning techniques)
§ Real-time IoT device management 

Smart Industry Cloud (IoT platform)

3[2] https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub



• IoT devices typically do not support TCP/IP networking stack[3]

§ Instead, LLNs
§ e.g., 802.15.4 (Zigbee), BLE (Bluetooth), LoRa
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Device itself: lack of Internet connectivity 

Cloud

[3] Dong, Wei, et al. "TinyNet: A lightweight, modular, and unified network architecture for the internet of things." Mobisys. 2022.



• Recent studies on enabling IoT-cloud connectivity of IoT devices
• Performance: problematic due to energy and resource constraints of devices[4]
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[4] Kumar, Sam, et al. "Performant TCP for Low-Power Wireless Networks." NSDI. 2020.
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• IoT gateway: essential device for Internet connectivity 
§ Standard solution in industry (e.g., Azure IoT hub, AWS IoT) 

• Internally run IoT agent per device for
§ Communication across various protocols
§ Message delivery (e.g., MQTT, HTTP, AMQP protocols)

• Generate messages / Sending messages
§ Certificate authority (CA) and data encryption (e.g., TLS)
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• IoT gateway must be scalable enough to manage multiple IoT devices
• Conduct experiments on closely mimicked real-world IoT scenarios

§ Emulate IoT gateway solutions of MS Azure and AWS 
§ Emulate usecases such as smart farm sensors, heartbeat sensors, and drone cameras

• Our findings on scalability
1) Poor latency  
2) Poor CPU usage
3) Inefficient CPU mismatch
4) TLS encryption overheads
5) Message priority problem
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• Exceed 1 second latency for only 64 devices (up to 11 s,1255×)
§ Serious problem (e.g., Health messages like ECG require < 1 s delivery)[5]

• Four cores saturated for only 64 devices
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CPU saturation (reach 400%) 

High message latency CPU bottleneck

1255×

1 message: delayed ~ 11s

[5] Shukla, Saurabh, et al. "An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment." PloS one. 2019.
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Inefficient CPU 
usage of ARM

• Profiling has been conducted on two architectures, ARM and x86 (by Perf) 
• ARM—frequent and widely used for IoT gateways but show inefficient usage

§ Scheduling/context switching: 55.7% more than x86
§ Lock/unlock: 3.4x more than x86 

• Especially, spin-lock becomes too expensive for IoT devices



• Increase in CPU usage and latency when msgs are encrypted by TLS

• Small msg (100 B): 73% ↑ CPU cycles + 134% ↑ latency
• Large msg (16 KB): 128% ↑ latency 
• Reasonable point—1KB: smallest overhead
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Long encryption delay
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• Msg priority in IoT (baseline): MQTT`s QoS levels
§ QoS 0: lower latency & reliability / QoS 1: higher latency & reliability

• QoS 0: 18% better latency but 62% higher packet drops than QoS 1
• Severe packet drops (reliability) with very small improvement in latency
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Only 18.75% latency 
reduce Poor reliability 

(27.9%) 



Challenges
1. Inefficient CPU architecture
2. TLS encryption overhead 
3. Message priority problem

Our approach
1. Architecture-aware IoT agent management
2. Efficient message batching 
3. Priority guaranteed packet processing  
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• Advanced IoT gateway architecture  
for performant & priority-oriented message delivery
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• ARM: high overheads in scheduling and lock
• Core affinity (pinning) to avoid costly operations

§ Reception manager: determine the specific core on which each agent operates
• How to decide core affinity?

§ Leverage Jenkins hash function to equally distribute IoT devices across cores
§ Future work: more intelligent schemes on core allocation 
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• Avoid frequent TLS encryption by message batching
• Efficient message batching with three thresholds 

1) Number of connected IoT devices (n)
§ Small IoT devices (n < 50) à no batching 
§ Numerous IoT devices (n ≥ 50) à batching

2) Message size (m)
§ Aggregating record data until m ≒ 1KB

3) Waiting time (t)
§ Aggregating record data until t ≒ 1 second
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Challenge: TLS encryption overhead



• Prototype with two priority levels
§ 1: high-priority, 2: normal
§ Future work: Can be extended for various levels 

• High priority msgs w/o message batching

• Msg classification per priority
§ Implemented by priority qdisc filters

• Dequeue packets based on priorities
§ Priority queue scheduling at the driver level
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• Evaluation metrics  
1) CPU usage
2) Message latency 
3) Message priority (latency and reliability)

• Baseline (native IoT gateway): Raspberry pi 4 + MQTT (QoS 1) + TLS v1.3

• Future work
• Real-world & large-scale experiment 
• Comparison with others (e.g., Interoperability IoT devices, Azure IoT gateway, …)
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• Total CPU usage: ~77.6% reduced (not saturated!)
• Message latency: ~16.7× improved (under than 0.8 s)
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Message latencyTotal CPU usage



• Setting different priorities (1 or 2) on four IoT devices
• Higher priority (1): ~43.2% better latency than normal priority (2)
• No packet drops for all priorities
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• Scalability issues of IoT gateway from real-world experiments 
§ Poor message latency and CPU usage 
§ CPU architecture mismatch results in ~56% CPU cycles waste 
§ TLS encryption leads to ~73% more CPU usage & ~134% longer latency
§ Existing message protocol: only 18% latency reduce with ~62% packet drop

• SegaNet: An advanced IoT gateway architecture addressing key challenges: 
§ 77% lower CPU usage and 16.7× better latency 
§ Prioritized processing of messages with 43% faster delivery and zero drop
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Container
at IoT Gateway

Cooperation with 
IoT and Cloud 

Large-Scale 
Environments

(e.g., OpenNetLab) 

SegaNet: potential to serve advanced IoT gateway and IoT-cloud framework
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Environment
• IoT gateway: Raspberry pi 4 

• ARM Cortex-A72 64-bit quad core@1.5GHz CPU, 8GB RAM, 1 Gbps Ethernet
• Each IoT device generates a 100B-1KB message per 100 ms
• IoT gateway publishes MQTT message with QoS 1
• Messages are encrypted with TLS v1.3 
• Message broker is placed at cloud (emulate with separate server machine)

Latency measurement
• Elapsed time of individual messages processed by IoT gateway 
• Measure 99% tail latency of all messages

CPU measurement 
• Average CPU usage while processing messages using mpstat & Perf (Linux)


